Vietnam Single Tim Ban Bon Phuong  


HOME  -  FORUM  -  REGISTER  -  MY ACCOUNT  -  NEW  PHOTOS  -  BROWSE  -  SEARCH  -  POEM  -  ECARD  -  FAQ  -  NCTT  -  CONTACT



Diễn Đàn
 Những chủ đề mới nhất
 Những góp ư mới nhất
 Những chủ đề chưa góp ư

 
NCTT Những chủ đề mới nhất

NCTT Những góp ư mới nhất
NCTT Website


Who is Online
 

 

Forum > Khoa học >> Giải Nobel Vật lư(2)

 Bấm vào đây để góp ư kiến

Trang nhat

 nvdtdnguyen
 member

 ID 16594
 10/29/2006



Giải Nobel Vật lư(2)
profile - trang ca nhan  posts - bai da dang  email -goi thu   Thong bao bai viet spam den webmaster  edit -sua doi, thay doi edit -sua doi, thay doi  post reply - goy y kien
( cont)
--------Từ thế giới vi mô đến thế giới vĩ mô----------
+++++++++++Thuyết tương đối+++++++++++=
Một mối liên hệ khác liên kết các thực thể nhỏ nhất và lớn nhất trong vũ trụ của chúng ta là lư thuyết tương đối của Albert Einstein. Einstein đưa ra thuyết tương đối hẹp của ḿnh lần đầu tiên vào năm 1905 với phương tŕnh cho biết mối liên hệ giữa khối lượng và năng lượng E = mc². Và vào thập kỷ tiếp theo, ông tiếp tục đưa ra thuyết tương đối rộng liên hệ lực hấp dẫn với cấu trúc của không gian và thời gian. Tất cả các tính toán khối lượng hiệu dụng của các hạt năng lượng cao, của các biến đổi năng lượng trong phân ră phóng xạ cũng như các tiên đoán của Dirac về sự tồn tại của phản hạt, đều dựa trên lư thuyết tương đối của ông. Lư thuyết tương đối rộng là cơ sở cho các tính toán chuyển động trên thang vĩ mô của vũ trụ, kể cả giả thiết về tính chất của hố đen. Einstein nhận giải Nobel vào năm 1922 lại do công tŕnh về hiệu ứng quang điện thể hiện bản chất hạt của ánh sáng.

Photobucket - Video and Image Hosting


Albert Einstein, Cha đẻ của Thuyết tương đối, nhưng lại được trao giải Nobel về Hiệu ứng quang điện
++++++++Các đồng vị+++++++
Ernest Rutherford và Frederick Soddy (Nobel hóa học 1921) đưa ra lư thuyết biến tố. Họ đă theo dơi rất chi tiết một chuỗi các phân ră phóng xạ khác nhau và so sánh năng lượng phát ra với sự thay đổi về khối lượng của hạt nhân mẹ và hạt nhân con. Họ t́m thấy rằng hạt nhân thuộc một nguyên tố hóa học có thể có các khối lượng khác nhau và họ đă t́m ra các đồng vị. Một giải Nobel cũng được trao vào năm 1922 cho Francis William Aston về việc tách quang phổ - khối lượng của một số lớn các đồng vị của các nguyên tố không phóng xạ. Cùng lúc đó Marie Curie cũng nhận giải Nobel lần thứ hai (lần này về hóa học) về phát hiện ra các nguyên tố hóa học radi và poloni.

Khối lượng của các đồng vị đều là một số nguyên lần khối lượng của proton, hạt proton do Rutherford phát hiện lần đầu tiên khi ông chiếu tia alpha và hạt nhận nguyên tử nitơ. Nhưng các đồng vị không thể chỉ được tạo thành từ các proton được v́ mỗi nguyên tố hóa học chỉ có một giá trị tổng điện tích hạt nhân. Thông thường các proton chỉ chiếm không đến một nửa khối lượng hạt nhân, điều đó có nghĩa là một số thành phần không mang điện cũng có mặt trong hạt nhân. James Chadwick lần đầu tiên t́m thấy chứng cứ cho hạt đó, gọi là hạt neutron khi ông nghiên cứu các phản ứng hạt nhân năm 1932. Ông nhận giải Noebel vật lư năm 1935.

Ngay sau phát hiện của Chadwick, Enrico Fermi và một số người khác cũng bắt tay vào nghiên cứu neutron như là một phương pháp để tạo ra các phản ứng hạt nhân mà có thể gây ra phóng xạ "nhân tạo". Fermi thấy rằng xác suất của các phản ứng hạt nhân cảm ứng (không bao gồm biến đổi nguyên tố) tăng lên khi neutron bị làm chậm đi và điều này cũng đúng cho các nguyên tố nặng giống như với các nguyên tố nhẹ, trái ngược với phản ứng của các hạt mang điện (ví dụ như proton) cảm ứng. Ông nhận giải Nobel vật lư năm 1938.

++++++++++Vật lư hạt nhân+++++++++
Một nhánh của vật lư gọi là vật lư hạt nhân đă được h́nh thành dựa trên giả thiết hạt nhân được tạo thành từ các proton và neutron và một vài thành tựu quan trọng đă được ghi nhận bằng các giải Nobel. Ernest Lawrence, người nhận giải Nobel vật lư năm 1939 đă xây máy gia tốc đầu tiên trong đó các hạt được gia tốc dần dần bằng việc gia tăng năng lượng cho hạt sau mỗi ṿng quay trong từ trường. Sir John Cockcroft và Ernest Walton đă gia tốc các hạt bằng việc tác động trực tiếp một điện thế rất cao và các ông cũng được trao giải vào năm 1951 cho công tŕnh nghiên cứu về biến tố.

Otto Stern nhận giải Nobel vật lư năm 1943 cho các phương pháp thực nghiệm của ông để nghiên cứu tính chất từ của hạt nhân, đặc biệt là xác định mô men từ của proton. Isidor I. Rabi làm tăng độ chính xác lên hai bậc trong việc xác định mô men từ của hạt nhân bằng kỹ thuật cộng hưởng tần số vô tuyến, và do đó, ông nhận giải Nobel vật lư năm 1944. Sau đó, vào nửa cuối của thế kỷ một vài nhà vật lư lư thuyết được trao giải cho những công tŕnh về mô h́nh hóa lư thuyết các hệ nhiều hạt như: Eugene Wigner, Maria Goeppert-Mayer và J. Hans D. Jensen vào năm 1963 và Aage Niels Bohr, Ben Roy Mottelson và Leo James Rainwater vào năm 1975.

+++++++++++Vật lư năng lượng cao+++++++++
Ngay từ năm 1912 Victor F. Hess (giải Nobel năm 1936 cùng với Carl David Anderson) thấy rằng các bức xạ có khả năng đi sâu vào vật chất có thể đến với chúng ta từ khoảng không ngoài vũ trụ. Bức xạ vũ trụ này được ghi nhận bằng các buồng ion hóa và sau này là buồng mây Wilson. Các tính chất của các hạt có thể phỏng đoán từ các vạch cong của các hạt để lại trong buồng ion hóa dưới tác dụng của từ trường ngoài rất lớn. Theo cách đó, Anderson đă phát hiện ra phản điện tử (positron). Anderson và Patrick Blackett cho thấy rằng, tia gamma có thể sinh ra các cặp điện tử-phản điện tử (electron-positron) và ngược lại, điện tử và phản điện tử có thể hủy nhau tạo ra chính tia gamma bị mất đi. Blackett nhận giải Nobel vật lư năm 1948 cho việc phát triển buồng mây sau này và các phát minh mà ông đă thực hiện để làm việc đó.

Mặc dù sau này, các máy gia tốc được phát triển nhiều, bức xạ vũ trụ vẫn là nguồn chủ yếu của các hạt năng lượng cao trong vài thập kỷ (và hạt từ bức xạ vũ trụ có năng lượng lớn hơn năng lượng của các hạt tạo ra từ các máy gia tốc lớn nhất trên trái đất, mặc dù cường độ của bức xạ vũ trụ rất nhỏ) và nó đă cung cấp những h́nh ảnh ban đầu của một thế giới hạ hạt nhân mà lúc bấy giờ con người hoàn toàn chưa biết. Một loại hạt mới gọi là meson được phát hiện năm 1937 có khối lượng xấp xỉ 200 lần khối lượng điện tử (nhưng nhẹ hơn proton 10 lần). Năm 1946, Cecil Frank Powell đă làm sáng tỏ hiện tượng trên và cho rằng thực ra là có có hơn một loại hạt như vậy tồn tại. Một trong số đó có tên là meson pi phân ră thành một hạt khác gọi là meson muy. Powell nhận giải Nobel vật lư năm 1950.

+++++++++++Hạt cơ bản++++++++==
Năm 1935, Hideki Yukawa giả thiết rằng lực tương tác mạnh có thể được truyền bằng các hạt trao đổi, giống như lực điện từ được giả thiết được truyền thông qua trao đổi các quang tử ảo trong lư thuyết trường lượng tử. Yukawa cho rằng một hạt như vậy phải có khối lượng khoảng 200 lần khối lượng của điện tử để giải thích tầm tác dụng ngắn của lực tương tác mạnh mà thực nghiệm t́m ra. Hạt meson pi mà Powell t́m ra có các tính chất phù hợp để có thể là hạt Yukawa. Ngược lại, hạt meson mu lại có các tính chất hoàn toàn khác (và tên của nó sau này được đổi thành muon). Yukawa nhận giải thưởng Nobel vật lư năm 1949. Mặc dù các nghiên cứu sau này chỉ ra rằng cơ chế của lực tương tác mạnh phức tạp hơn bức tranh của Yukawa rất nhiều nhưng ông vẫn được coi là tiên phong trong nhiên cứu các hạt truyền tương tác mạnh. David J. Gross, H. David Politzer và Frank Wilczeck là chủ nhân của giải Nobel vật lư năm 2004 với những khám phá về lực hạt nhân mạnh. Nghiên cứu của họ chỉ ra rằng, không giống như các lực khác, lực tương tác mạnh lại suy yếu đi khi hai quark tiến về một chỗ. Hiện tượng đó giống như thể các hạt được nối với nhau bằng một dải cao su, mà lực kéo giữa chúng càng mạnh khi chúng càng ở xa nhau. Phát hiện của ba nhà nghiên cứu này, công bố năm 1973, đă dẫn đến lư thuyết về sắc động lực học lượng tử - lư thuyết góp phần quan trọng cho sự ra đời của Mô h́nh Chuẩn.

Vào cuối những năm 1950, các máy gia tốc có thể đạt năng lượng vài tỉ eV (electron-volt), tức là các cặp hạt với khối lượng bằng khối lượng của proton có thể được tạo ra từ chuyển đổi năng lượng-khối lượng. Phương pháp này được nhóm nghiên cứu của Owen Chamberlain và Emilio Segrè sử dụng khi lần đầu tiên họ đă xác định và nghiên cứu phản proton vào năm 1955 (học chia nhau giải Nobel năm 1959). Các máy gia tốc năng lượng cao cũng cho phép cũng cho phép nghiên cứu cấu trúc của proton và neutron chi tiết hơn trước đó rất nhiều và Robert Hofstadter có thể phân biệt chi tiết cấu trúc điện từ của các nucleon nhờ quan sát tán xạ của chúng lên các điện tử năng lượng cao. Ông nhận nửa giải Nobel vật lư năm 1961.

Sự tồn tại của hạt neutrino tiên đoán từ lư thuyết của Pauli vào những năm 1930 cũng đă được ghi nhận. Các bằng chứng trực tiếp thực nghiệm đầu tiên về hạt neutrino được Clyde Cowan và Frederick Reines cung cấp vào năm 1957 nhưng măi đến năm 1995, công tŕnh đó mới được trao một nửa giải Nobel (lúc đó Cowan đă chết, ông chết năm 1984). Neutrino cũng có mặt trong các quá tŕnh liên quan đến tương tác yếu (như là phân ră của hạt betha và hạt meson pi thành hạt muon) và khi cường độc chùm hạt tăng lên, các máy gia tốc có thể tạo ra các chùm neutrino thứ cấp. Leon M. Lederman, Melvin Schwartz và Jack Steinberger đă phát triển phương pháp này vào những năm 1960 và chứng minh rằng hạt neutrino đi kèm trong phân ră meson pi thành muon không đồng nhất với các neutrino liên quan đến các điện tử trong phân ră hạt betha, chúng là hai hạt riêng biệt gọi là hạt neutrino điện tử và neutrino muon. Giải Nobel vật lư năm 2002 được trao cho Riccardo Giacconi, Masatoshi Koshiba và Raymond Davis Jr. v́ có công thu được các hạt neutrino, khẳng định bằng thực nghiệm sự có mặt của hạt này.

Hạt điện tử , hạt muon , neutrino điện tử , neutrino muon và các phản hạt của chúng đă được t́m thấy và chúng thuộc cùng một lớp gọi là lepton. Các hạt trên không tương tác bởi lực tương tác mạnh; ngược lại, các hạt proton, neutron, meson và hyperon (tập hợp các hạt có khối lượng lớn hơn khối lượng của proton) lại được xác định bởi lực tương tác mạnh. Các hạt lepton được mở rộng khi Martin Lewis Perl và nhóm nghiên cứu của ông đă phát hiện ra hạt lepton tau có khối lượng lớn hơn điện tử và muon. Perl chia giải Nobel với Reines vào năm 1995.

+++++++++Hạt quake++++++++++++++
Tất cả các lepton vẫn được coi là các hạt cơ bản, tức là chúng giống như các điểm và không có cấu trúc nội, nhưng đối với proton,... th́ lại không phải vậy. Murray Gell-Mann và nhiều người khác cố gắng phân loại các hạt tương tác rất mạnh (gọi là các hadron) thành các nhóm có các liên hệ và kiểu tương tác giống nhau. Gell-Mann nhận giải Nobel năm 1969. Hệ thống của ông dựa trên giả thiết rằng tất cả các hạt đều được tạo thành từ các hạt nguyên tố gọi là các hạt quark. Bằng chứng thực về việc các nucleon được tạo thành từ các hạt giống như quark đến từ công tŕnh của Jerome Isaac Friedman, Henry Way Kendall và Richard Edward Taylor. Họ "nh́n thấy" các hạt cứng bên trong các lepton khi nghiên cứu tán xạ không đàn hồi của các điện tử lên các lepton. Do đó, họ cùng nhau chia giải Nobel năm 1990.

Người ta hiểu rằng tất cả các hạt tương tác mạnh đều được tạo thành từ các quark. Vào giữa những năm 1970, một hạt có thời gian sống rất ngắn được phát hiện một cách độc lập bởi nhóm của Burton Richter và Samuel C. C. Ting. Đó là một loại hạt quark chưa được biết vào lúc đó và được đặt tên là quark đẹp (charm). Hạt quark này không có mối liên hệ nào đến hệ thống các hạt cơ bản và Richter và Ting chia nhau giải Nobel năm 1976. Mô h́nh chuẩn trong vật lư hạt phân chia các hạt thành 3 họ, họ thứ nhất gồm: 2 quark (và các phản quark) và hai lepton, trong mỗi lepton đều có các quark thuận và nghịch, điện tử và neutrino điện tử; họ thứ hai gồm: quark lạ (strange) và quark đẹp, muon và neutrino muon; họ thứ ba gồm: quark thuận, quark nghịch, tau và tau neutrino. Các hạt truyền tương tác trong tương tác điện yếu là photon, Z boson và W boson; trong tương tác mạnh là các hạt gluon.

Năm 1983, Carlo Rubbia và nhóm nghiên cứu của ông đă chứng minh sự tồn tại của các hạt W và Z bằng buồng va chạm proton-phản proton với năng lượng đủ cao để tạo ra các hạt rất nặng đó. Rubbia chia giải năm 1984 với Simon van der Meer, người có những phát minh quan trọng trong việc xây dựng buồng va chạm đó. Họ cũng suy đoán rằng có các hạt khác có thể được tạo ra tại các năng lượng cao hơn năng lượng của các máy gia tốc hiện thời, nhưng đến giờ không có bằng chứng thực nghiệm nào về điều đó.
+++++++++++++Vũ trụ học+++++++++++++=
Mô h́nh vụ nổ lớn miêu tả một kịch bản có thể cho sự tiến hóa của vũ trụ tại những thời điểm đầu tiên. Một trong những tiên đoán của mô h́nh đó là sự tồn tại của nền bức xạ vũ trụ mà đă được Arno Allan Penzias và Robert Woodrow Wilson t́m ra vào năm 1960. Họ cùng nhận giải Nobel vật lư năm 1978.

Hans Bethe lần đầu tiên miêu tả chu ḱ hiđrô và cacbon trong đó năng lượng được giải phóng trong các ngôi sao bởi sự kết hợp của proton thành hạt nhân hêli. V́ đóng góp này, ông nhận giải Nobel vật lư vào năm 1967.

Subramanyan Chandrasekhar đă tính toán lư thuyết quá tŕnh tiến hóa của các ngôi sao, đặc biệt là các ngôi sao sẽ kết thúc cuộc đời của ḿnh ở một trạng thái gọi là sao lùn trắng. Dưới một số điều kiện đặc biệt, sản phẩm cuối cùng có thể là sao neutron, một vật thể cực đặc trong đó tất cả các proton biến thành neutron. Trong các vụ nổ siêu sao, các nguyên tố nặng được tạo ra trong quá tŕnh tiến hóa của các sao sẽ bay vào trong khoảng không vũ trụ. William Afred Fowler đă làm sáng tỏ rất chi tiết cả về mặt lư thuyết và thực nghiệm các phản ứng hạt nhân quan trọng nhất trong các ngôi sao và sự h́nh thành các nguyên tố nặng. Fowler và Chandrasekhar cùng nhận giải Nobel vật lư năm 1983.

Thiên văn vô tuyến cung cấp các thông tin về các vật thể vũ trụ mà chúng ta không thể quan sát được bằng phổ quang học. Sir Martin Ryle đă phát triển một phương pháp trong đó các tín hiệu từ vài kính thiên văn đặt cách xa nhau có thể kết hợp với nhau để làm tăng độ phân giải của bản đồ nguồn sóng radio từ bầu trời. Antony Hewish và nhóm nghiên cứu của ông đă thực hiện một phát minh rất ngẫu nhiên vào năm 1964 khi sử dụng kính thiên văn của Ryle: các vật thể không xác định gọi là pulsar phát ra các xung tần số sóng vô tuyến với tốc độ lặp lại rất xác định. Ryle và Hewish chia giải Nobel vật lư năm 1974.

Năm 1974 cuộc t́m kiếm pulsar là đối tượng chính của các nhà thiên văn vô tuyến, nhưng một bất ngờ khác đă đến vào mùa hè năm đó khi Russell Alan Hulse và Joseph Hooton Taylor, Jr. đă chú ư đến sự điều biến chu ḱ của tần số các xung của một pulsar mới được phát hiện gọi là PSR 1913+16. Đó chính là pulsar đôi đầu tiên được ghi nhận, nó được đặt tên như vậy bởi v́ sao neutron phát ra sóng radio là một thành phần trong một hệ sao đôi có kích thước gần bằng nhau. Các quan sát trên 20 năm về hệ sao này cho thấy bằng chứng của sóng hấp dẫn. Sự suy giảm của tần số quay rất phù hợp với các tính toán dựa trên lư thuyết của Einstein về mất mát năng lượng gây ra do phát ra sóng hấp dẫn. Hulse và Taylor chia nhau giải Nobel vật lư vào năm 1993. Tuy vậy việc thu trực tiếp sóng hấp dẫn trên Trái Đất vẫn chưa được thực hiện.

----------Từ đơn giản tới phức tạp-----------
++++++++++++Hạt nhân nguyên tử+++++++++++++
Để đơn giản hóa, người ta coi hạt nhân nguyên tử, theo một phép gần đúng bậc một, được tạo thành từ các hạt nucleon. Mô h́nh đầu tiên về cấu trúc hạt nhân là mô h́nh các lớp hạt nhân do Maria Goeppert-Mayer và Johannes D. Jensen đưa ra vào cuối những năm 1940. Họ nhận thấy rằng ít nhất đối với các hạt nhân với h́nh gần như h́nh cầu th́ các nucleon bên ngoài cùng cũng lấp đầy các mức năng lượng giống như các điện tử trong nguyên tử. Tuy vậy, trật tự của các nucleon lại khác với các điện tử và được xác định bởi một thế năng chung và bởi sự kết cặp spin-quĩ đạo rất mạnh của các lực hạt nhân. Mô h́nh của họ giải thích tại sao hạt nhân lại đặc biệt ổn định với một số xác định (con số ḱ diệu) các proton. Họ chia nhau giải Nobel vật lư năm 1963 cùng với Eugene Wigner, người đă công thức hóa các nguyên lư đối xứng cơ bản rất quan trọng trong vật lư hạt nhân và vật lư hạt.

Hạt nhân có số nucleon khác với con số ḱ diệu th́ lại không phải là h́nh cầu. Niels Bohr đă từng nghiên cứu mô h́nh giọt chất lỏng áp dụng cho các hạt nhân bị biến dạng như vậy (có thể có dạng h́nh e-líp), và vào năm 1939 người ta thấy rằng nếu kích thích các hạt nhân bị biến dạng mạnh có thể dẫn đến sự phân chia hạt nhân, tức là hạt nhân bị phá vỡ thành hai mảnh lớn. Otto Hahn nhận giải Nobel hóa học năm 1944 cho phát hiện quá tŕnh mới này. H́nh phi cầu của hạt nhân biến dạng sinh thêm các bậc tự do cũng giống như sự dao động tập thể của các hạt nhân. James Rainwater, Aage Bohr (con trai của Niels Bohr) và Ben Mottelson đă phát triển các mô h́nh miêu tả các kích thích hạt nhân và họ cùng nhận giải Nobel vật lư năm 1975.

Các mô h́nh về hạt nhân được nhắc đến trên đây không chỉ dựa trên các nguyên lư chung, có tính định hướng mà c̣n dựa trên các thông tin ngày càng tăng về phổ hạt nhân. Harold C. Urey đă phát hiện ra deuterium, một đồng vị nặng của hydrogen và, v́ thế, ông được trao giải Nobel về hóa học vào năm 1934. Fermi, Lawrence, Cockcroft và Walton, được nhắc đến ở phần trước, đă phát triển các phương pháp để tạo ra các đồng vị hạt nhân không bền. Edwin M. McMillan và Glenn T. Seaborg nhận giải Nobel hóa học năm 1951 v́ đă mở rộng bảng đồng vị hạt nhân tới các nguyên tố nặng nhất. Năm 1954, Walther Bothe và Max Born (được nhắc đến ở trên) nhận giải Nobel vật lư v́ phát triển phương pháp trùng hợp cho phép những người nghiên cứu quang phổ có thể lựa chọn các chuỗi bức xạ hạt nhân có liên quan từ phân ră hạt nhân.
++++++++++++Nguyên tử++++++++++
Một bài toán có từ lâu vẫn chưa được giải quyết là các vấn đề toán học liên quan đến các tương tác lẫn nhau giữa các điện tử sau khi tính đến lực hút của các hạt nhân mang điện tích dương. Một khía cạnh của vấn đề này đă được đề cập bởi một trong những người đạt giải Nobel hóa học mới đây (1998), đó là Walter Kohn. Ông đă phát triển phương pháp hàm mật độ có thể áp dụng vào các nguyên tử tự do cũng như áp dụng cho các điện tử trong các phân tử và trong chất rắn.

Vào đầu thế kỉ 20, bảng tuần hoàn nguyên tố hóa học vẫn chưa hoàn thiện. Lịch sử ban đầu của giải Nobel bao gồm các phát hiện một số các nguyên tố c̣n thiếu. Lord Raleigh đă chú ư đến những dị thường về khối lượng nguyên tử tương đối khi các mẫu ôxy và nitơ được tách trực tiếp từ không khí quanh ta chứ không phải tách chúng từ các thành phần hóa học. Ông kết luận rằng khí quyển phải có chứa thành phần chưa biết, đó là nguyên tố argon, có khối lượng nguyên tử là 20. Ông nhận giải Nobel vật lư năm 1904, cùng năm với Sir William Ramsay nhận giải Nobel hóa học v́ đă tách được nguyên tố hêli.

Trong nửa cuối của thế kỉ 20, đă có một sự phát triển vượt bậc về phổ và độ chính xác nguyên tử, mà nhờ đó người ta có thể đo được các dịch chuyển giữa các trạng thái nguyên tử, hoặc phân tử, rơi vào vùng vi sóng hoặc vùng ánh sáng khả kiến. Vào những năm 1950, Alfred Kastler (giải Nobel năm 1966) và các đồng nghiệp cho thấy các điện tử trong các nguyên tử có thể được đặt vào các trạng thái kích thích lọc lựa bằng các sử dụng ánh sáng phân cực. Sau phân ră phóng xạ, ánh sáng phân cực cũng có thể làm cho spin của các nguyên tử ở trạng thái cơ bản định hướng.

Cảm ứng dịch chuyển tần số vô tuyến đă mở ra các khả năng đo một cách chính xác hơn trước rất nhiều các tính chất của các trạng thái bị lượng tử hóa của các điện tử trong nguyên tử. Một hướng phát triển song song đă dẫn đến việc phát hiện ra maser và laser dựa trên khuyếch đại phát xạ kích thích sóng vô tuyến trong các trường sóng điện từ ở vùng vi sóng và khả kiến – các hiệu ứng mà về mặt nguyên lư đă được tiên đoán từ các phương tŕnh của Einstein vào năm 1917 nhưng đă không được quan tâm đặc biệt cho đến tận đầu những năm 1950.

Charles H. Townes đă phát triển maser đầu tiên vào năm 1958. Nikolay G. Basov và Aleksandr M. Prokhorov đă thực hiện công tŕnh lư thuyết về nguyên lư maser. Maser đầu tiên sử dụng một dịch chuyển kích thích trong phân tử ammonium. Nó đă phát ra bức xạ vi sóng mạnh không giống như các bức xạ tự nhiên (với các quang tử có các pha khác nhau). Độ sắc nét của tần số của maser ngay lập tức trở thành một công cụ quan trọng trong kĩ thuật, xác định thời gian và các mục đích khác. Townes nhận nửa giải Nobel vật lư năm 1964, Basov và Prokhorov chia nhau một nửa giải c̣n lại.

Đối với bức xạ khả kiến, sau này laser được phát triển trong một số pḥng thí nghiệm. Nicolaas Bloembergen và Arthur L. Schawlow được nhận nửa giải Nobel năm 1981 cho công tŕnh nghiên cứu về phổ laser chính xác của các nguyên tử và phân tử. Một nửa giải của năm đó được trao cho Kai M. Siegbahn (con trai của Manne Siegbahn), người đă phát triển một phương pháp có độ chính xác cao trong việc xác định phổ nguyên tử và phân tử dựa vào các điện tử phát ra từ các lớp điện tử bên trong khi bị tác động của chùm tia X có năng lượng đă được xác định. Phổ điện tử của ông được sử dụng làm công cụ phân tích trong rất nhiều ngành của vật lư và hóa học.

Norman F. Ramsey đă phát triển các phương pháp chính xác dựa trên sự hưởng ứng của các điện tử tự do trong chùm nguyên tử với trường điện từ tần số vô tuyến, Wolfgang Paul đă phát minh ra các bẫy nguyên tử tạo thành từ các điện trường và từ trường tác động lên toàn bộ thể tích mẫu. Nhóm nghiên cứu của Hans G. Dehmelt là những người đầu tiên cách ly được các hạt riêng lẻ (trong trường hợp này là các phản điện tử) cũng như là các nguyên tử riêng lẻ trong các bẫy như vậy. Lần đầu tiên, các nhà thực nghiệm có thể "giao tiếp" được với các nguyên tử riêng biệt bằng các tín hiệu vi sóng và laser. Điều này cho phép nghiên cứu các khía cạnh mới của tính chất cơ học lượng tử và làm tăng độ chính xác hơn nữa trong việc xác định tính chất nguyên tử và chuẩn hóa thời gian. Paul và Dehmelt nhận một nửa giải Nobel năm 1989 và nửa c̣n lại được trao cho Ramsey.

Bước cuối cùng trong tiến bộ này là làm cho các nguyên tử trong các bẫy như vậy chuyển động chậm đến mức, ở trạng thái cân bằng nhiệt trong môi trường khí, chúng có thể tương ứng với nhiệt độ chỉ vài micro Kenvin. Điều đó được thực hiện bằng cách cho chúng vào để làm nguội bằng laser thông qua một tập hợp các hệ thống được thiết kế rất thông minh do Steven Chu, Claude Cohen-Tannoudji và William D. Phillips thực hiện khi nhóm này nghiên cứu thao tác lên các nguyên tử thông qua quá tŕnh va chạm với các quang tử laser. Công tŕnh của họ được nh́n nhận bằng giải Nobel năm 1997.

++++++++++PHân tử và plasma++++++++++++++++
Các phân tử tạo thành từ các nguyên tử. Chúng tạo ra mức phức tạp tiếp theo khi nghiên cứu các hệ nhiều hạt. Nhưng các nghiên cứu phân tử thường được coi như một nhánh của hóa học và hiếm khi được trao giải Nobel về vật lư. Chỉ có một ngoại lệ đó là công tŕnh của Johannes Diderik van der Waals, ông đă đưa ra các phương tŕnh trạng thái của các phân tử cho chất khí khi tính đến tương tác lẫn nhau giữa các phân tử và sự giảm thể tích tự do gây ra bởi kích thước hữu hạn của chúng. Các phương tŕnh van der Waals là những điểm rất quan trọng trong việc miêu tả quá tŕnh ngưng tụ của các chất khí thành chất lỏng. Ông nhận giải Nobel vật lư năm 1910. Jean B. Perrin nghiên cứu chuyển động của các hạt nhỏ phân tán trong nước và nhận giải Nobel năm 1926. Nghiên cứu của ông cho phép khẳng định lư thuyết thống kê của Einstein về chuyển động Brown cũng như các định luật điều khiển quá tŕnh cân bằng của các hạt phân tán trong chất lỏng khi chịu tác dụng của trọng lực.

Năm 1930, Sir C. Venkata Raman nhận giải Nobel vật lư cho các quan sát của ông chứng tỏ rằng ánh sáng tán xạ từ các phân tử bao gồm các thành phần có tần số bị dịch chuyển tương ứng với ánh sáng đơn sắc. Sự dịch chuyển này gây bởi sự tăng hoặc giảm năng lượng đặc trưng của phân tử khi chúng thay đổi chuyển động quay hoặc dao động. Phổ Raman nhanh chóng trở thành nguồn thông tin quan trọng cung về cấu trúc và động học phân tử.

Plasma là trạng thái khí của vật chất trong đó các nguyên tử hoặc phân tử bị ion hóa rất mạnh. Lực điện từ giữa các ion dương và giữa các ion và điện tử đóng một vai tṛ nổi trội, điều này làm tăng tính phức tạp khi nghiên cứu plasma so với nguyên tử hoặc phân tử trung tính. Năm 1940, Hannes Alfvén đă chứng minh rằng một loại chuyển động tập thể mới, gọi là sóng từ-thủy động lực học có thể được sinh ra trong các hệ plasma. Các sóng này đóng một vai tṛn quan trọng xác định tính chất của plasma, trong pḥng thí nghiệm cũng như trong khí quyển Trái Đất và trong vũ trụ. Alfvén nhận nửa giải Nobel năm 1970.

++++++++++++++Vật lư chất rắn+++++++++++=
***********Cấu trúc tinh thể**********
Các tinh thể được đặc trưng bởi sự xắp xếp đều đặn của các nguyên tử. Sau khi phát hiện ra tia X không lâu, Max von Laue nhận thấy rằng, các tia X bị tán xạ khi đi qua các tinh thể chất rắn giống như ánh sáng đi qua một cách tử quang học. Có hiện tượng này là do bước sóng của tia X thông thường trùng với khoảng cách giữa các nguyên tử trong chất rắn. Sir William Henry Bragg (cha) và William Lawrence Bragg (con) lần đầu tiên dùng tia X để đo khoảng cách giữa các nguyên tử và phân tích sự sắp xếp h́nh học của các nguyên tử trong các tinh thể đơn giản. V́ các công tŕnh tiên phong trong việc nghiên cứu tinh thể học bằng tia X, họ được trao giải Nobel vật lư, Laue năm 1914 và cha con Bragg năm 1915.

Cấu trúc của tinh thể là trạng thái ổn định nhất trong nhiều trạng thái rắn mà nguyên tử có thể được xắp xếp tại nhiệt độ và áp suất thông thường. Vào những năm 1930, Percy W. Bridgman đă phát minh ra các dụng cụ mà nhờ đó có thể nghiên cứu sự thay đổi cấu trúc tinh thể, tính chất điện, từ, nhiệt của chất rắn dưới áp suất cao. Rất nhiều tinh thể thể hiện các chuyển pha dưới các điều kiện đặc biệt như vậy. Sự sắp xếp h́nh học của các nguyên tử bị thay đổi đột ngột tại áp suất nhất định. Bridgman nhận giải Nobel vật lư năm 1946 cho các phát minh trong lĩnh vực vật lư áp suất cao.

Vào những năm 1940, nhờ sự phát triển của các máy phản ứng phân ră hạt nhân, các nhà thực nghiệm có thể thu được các neutron năng lượng thấp. Người ta cũng thấy rằng, giống như tia X, các neutron cũng rất hiệu quả trong việc xác định cấu trúc tinh thể bởi v́ bước sóng de Broglie của hạt nhân cũng cỡ khoảng cách giữa các nguyên tử trong chất rắn. Clifford G. Shull đă có nhiều đóng góp cho sự phát triển kĩ thuật nhiễu xạ neutron trong việc xác định cấu trúc tinh thể, và cũng cho cho biết rằng, sự sắp xếp của các mô men từ nguyên tử trong các vật liệu có trật tự từ có thể làm tăng nhiễu xạ neutron, cung cấp một công cụ rất mạnh để xác định cấu trúc từ.

Shull nhận giải Nobel vật lư năm 1994 cùng với Bertram N. Brockhouse, chuyên gia về một khía cạnh khác của tán xạ neutron trên chất rắn: khi các neutron kích thích kiểu dao động tử mạng trong tinh thể gây ra suy giảm năng lượng. Do đó, Brockhouse đă phát triển máy phổ neutron 3 chiều, nhờ đó có thể thu được toàn vẹn các đường cong tán sắc (năng lượng của dan động tử mạng là một hàm của véc tơ sóng). Các đường cong tương tự có thể thu được đổi với dao động tử từ (magnon).

*************Tính chất từ của chất rắn**********
John H. Van Vleck có đóng góp đặc biệt cho lư thuyết từ học trong chất rắn vào những năm sau khi cơ học lượng tử ra đời. Ông đă tính toán các ảnh hưởng của liên kết hóa học lên các nguyên tử thuận từ và giải thích sự phụ thuộc vào nhiệt độ và từ trường ngoài của tính chất từ. Đặc biệt ông đă phát triển lư thuyết trường tinh thể của các hợp chất của các kim loại chuyển tiếp, đó là điều vô cùng quan trọngtrong việc t́m hiểu các tâm hoạt động trong các hợp chất dùng cho vật lư laser cũng như sinh học phân tử. Ông cùng nhận giải Nobel vật lư với Philip W. Anderson và Sir Nevill F. Mott (xem dưới đây).

Các nguyên tử từ có thể có các mô men từ sắp xếp theo cùng một phương trong một thể tích nhất định (vật liệu như vậy được gọi là vật liệu sắt từ), hoặc các mô men có cùng độ lớn nhưng lại sắp xếp đan xen thuận rồi đến nghịch (vật liệu phản sắt từ), hoặc sắp xếp đan xen nhưng độ lớn lại khác nhau (vật liệu ferri từ). Louis E. F. Néel đă đưa ra các mô h́nh cơ bản miêu tả các vật liệu phản sắt từ và ferri từ, đó là các thành phần quan trọng trong nhiều dụng cụ chất rắn. Các vật liệu đó được nghiên cứu rất nhiều bằng kĩ thuật nhiễu xạ neutron đă nói trên đây. Néel nhận một nửa giải Nobel vật lư năm 1970.

Trật tự của các nguyên tử trong tinh thể chất rắn cũng như rất nhiều loại trật tự từ khác nhau là những ví dụ của các hiện tượng trật tự nói chung trong tự nhiên khi các hệ t́m thấy sự sắp xếp sao cho có lợi về mặt năng lượng bằng cách chọn những trạng thái đối xứng nhất định. Các hiện tượng tới hạn, là các hiện tượng mà tính đối xứng sắp bị thay đổi (ví dụ khi nhiệt độ thay đổi chẳng hạn), có tính phổ quát cao cho các loại chuyển pha khác nhau, mà trong đó bao gồm cả chuyển pha từ. Kenneth G. Wilson, người nhận giải Nobel vật lư năm 1982, đă phát triển một lư thuyết gọi là lư thuyết tái chuẩn hóa cho các hiện tượng tới hạn liên hệ với các chuyển pha, một lư thuyết c̣n được ứng dụng trong lư thuyết trường của vật lư hạt cơn bản.

**********Tinh thể lỏng*********
Các tinh thể lỏng tạo ra một lớp vật liệu đặc biệt có rất nhiều đặc tính lư thú, trên cả quan điểm tương tác cơ bản trong chất rắn cũng như các ứng dụng kĩ thuật. Pierre-Gilles de Gennes đă phát triển lư thuyết cho tinh thể lỏng và sự chuyển giữa các pha có độ trật tự khác nhau. Ông cũng sử dụng cơ học thống kê để mô tử sự sắp xếp và động lực học của các chuỗi polymer, và bằng cách đó cho thấy rằng các phương pháp được phát triển cho các hiện tượng trật tự trong các hệ đơn giản có thể được khái quát hóa cho các hệ phức tạp có mặt trong chất rắn mềm. V́ đóng góp đó, ông nhận giải Nobel vật lư năm 1991.

Một dạng chất lỏng đặc biệt đă được quan tâm nghiên cứu đó là chất lỏng hêli. Tại áp suất thông thường, hêli là chất hóa lỏng ở nhiệt độ thấp nhất. Hêli cũng có hiệu ứng đồng vị mạnh nhất, từ hêli (4) hóa rắn ở nhiệt độ 4,2 Kelvin, cho đến hêli (3) hóa rắn ở nhiệt độ 3,2 Kelvin. Heike Kamerlingh-Onnes là người đầu tiên hóa lỏng hêli vào năm 1909. Ông nhận giải Nobel vật lư năm 1913 cho các kết quả của hêli lỏng và cho các nghiên cứu của ông về tính chất của vật chất tại nhiệt độ thấp. Lev D. Landau đă đưa ra các khái niệm cơ bản (ví dụ như chất lỏng Landau) liên quan đến các hệ nhiều hạt trong chất rắn và áp dụng các khái niệm đó vào lí thuyết hêli lỏng để giải thích các hiện tượng đặc biệt của hêli (4) như là hiện tượng siêu chảy (xem dưới đây), kích thích roton và các hiện tượng âm học. Ông được trao giải Nobel năm 1962.

***********Tại nhệt độ cực thấp************
Vào những năm 1920 và 1930, Pyotr L. Kapitsa đă phát triển một số kĩ thuật thực nghiệm để thực hiện và nghiên cứu các hiện tượng ở nhiệt độ thấp. Ông nghiên cứu nhiều khía cạnh của hêli (4) lỏng và cho thấy rằng hêli lỏng có tính siêu chảy (tức là chảy không có ma sát) khi nhiệt độ thấp hơn 2,2 Kelvin. Sau này hiện tượng siêu chảy được hiểu là sự thể hiện của mối liên hệ lượng tử giữa hiện tượng ngưng tụ Bose-Einstein (được tiên đoán bằng lư thuyết vào năm 1920) và nhiều tính chất giống như trạng thái siêu dẫn của điện tử trong một số chất dẫn điện đặc biệt. Kapitsa được trao một nửa giải Nobel vật lư năm 1978. Năm 2001, Eric A. Cornell và Carl E. Wieman đă quan sát hiện tượng ngưng tụ Bose-Einstein khi làm lạnh 2000 nguyên tử rubidium đến nhiệt độ chỉ bằng 2 phần tỉ độ trên nhiệt độ không tuyệt đối. Độc lập với hai nhà vật lư trên, Wolfgang Ketterle đă thực hiện các thí nghiệm với nguyên tử natri và ông đă tiến hành với một số nguyên tử lớn hơn và thu được nhiều kết quả hơn. Ông chứng minh rằng hai trạng thái ngưng tụ có thể lan truyền vào nhau và do đó giao thoa với nhau giống như giao thoa của sóng nước khi chúng ta ném hai ḥn đá giống nhau xuống nước cùng một lúc. Ketterle tạo ra một luồng các hạt ngưng tụ có tính chất giống laser nhưng khác ở chỗ laser loại này được tạo thành từ hạt vật chất chứ không phải tại thành từ hạt ánh sáng.

Hêli (3) th́ lại thể hiện các hiện tượng đặc biệt, v́ mỗi hạt nhân hêli có spin khác không chứ không giống như hêli (4). Do đó, nó giống như là các hạt fermion và không bị ngưng tụ Bose-Einstein như các hạt boson. Tuy vậy, giống như các vật liệu siêu dẫn (xem dưới đây), các cặp hạt có spin bán nguyên có thể tạo thành các hạt giả boson và có thể bị ngưng tụ gây nên trạng thái siêu chảy. Hiện tượng siêu chảy của hêli (3) xảy ra tại nhiệt độ thấp hơn của hêli (4) hàng ngàn lần và đă được David M. Lee, Douglas D. Osheroff và Robert C. Richardson phát hiện ra, họ nhận giải Nobel vật lư năm 1996. Họ đă quan sát thấy các pha siêu chảy khác nhau cho thấy cấu trúc xoáy phức tạp và các hiện tượng lượng tử rất thú vị.

***********Phát xạ điện tử của chất rắn**********
Các điện tử trong chất rắn có thể bị định xứ ở xung quanh các nguyên tử của chúng trong các chất cách điện, hoặc chúng có thể chuyển động qua lại giữa các vị trí của các nguyên tử trong các chất dẫn điện hoặc chất bán dẫn. Vào đầu thế kỉ 20, người ta biết rằng các kim loại có thể phát ra các điện tử khi bị nung nóng, nhưng người ta không biết điện tử phát ra là do bị kích thích nhiệt hay là do các tương tác hóa học với môi trường khí xung quanh. Bằng các thực nghiệm tiến hành trong môi trường có chân không cao, cuối cùng, Owen W. Richardson đă xác định rằng sự phát xạ của điện tử là do hiệu ứng nhiệt và ông cũng thiết lập định luật phân bố của của các điện tử theo vận tốc. Và do đó, Richardson nhận giải Nobel năm 1928.

************Siêu dẫn************
Năm 1911, Kamerlingh-Onnes đă thấy rằng điện trở của thủy ngân giảm xuống nhỏ hơn một phần tỉ giá trị b́nh thường khi bị làm lạnh thấp hơn một nhiệt độ chuyển pha Tc khoảng 4 Kelvin. Như được nhắc ở phần trên, ông đă nhận giải Nobel năm 1913. Tuy vậy, một thời gian dài người ta không hiểu tại sao các điện tử có thể chuyển động mà không bị cản trở trong các chất siêu dẫn tại nhiệt độ thấp. Nhưng vào đầu những năm 1960, Leon N. Cooper, John Bardeen và J. Robert Schrieffer đă đưa ra lư thuyết dựa trên ư tưởng là các cặp điện tử (có spin và hướng chuyển động ngược nhau) có thể giảm một lượng năng lượng Eg bằng cách chia xẻ một cách chính xác cùng một độ biến dạng của mạng tinh thể khi chúng chuyển động. Các cặp Cooper này hành động giống như các hạt boson. Sự tạo cặp này cho phép chúng chuyển động như một chất lỏng liên kết, không bị ảnh hưởng khi các kích thích nhiệt (có năng lượng là kT) nhỏ hơn năng lượng tạo thành khi kết cặp (Eg). Lí thuyết BCS này được trao giải Nobel vật lư năm 1972.

Đột phá trong việc hiểu cơ sở cơ học năng lượng này dẫn đến các tiến bộ trong các mạch siêu dẫn: Brian D. Josephson đă phân tích sự dịch chuyển của các hạt tải điện giữa hai kim loại siêu dẫn được ngăn cách bởi một lớp vật liệu dẫn điện thường rất mỏng. Ông t́m thấy rằng pha lượng tử xác định tính chất dịch chuyển là một hàm dao động của điện thế bên ngoài đặt lên chuyển tiếp này. Hiệu ứng Josephson có các ứng dụng quan trọng trong các phép đo chính xác v́ nó thiết lập mối liên hệ giữa điện thế và tần số. Josephson nhận một nửa giải Nobel vật lư năm 1973. Ivar Giaever, người đă phát minh và nghiên cứu các tính chất chi tiết của chuyển tiếp đường ngầm này (một hệ thống điện tử dựa trên chất siêu dẫn) chia nhau nửa giải c̣n lại với Leo Esaki cho công tŕnh nghiên cứu về hiệu ứng đường ngầm trong chất bán dẫn (xem dưới đây). Giải Nobel vật lư năm 2003 được trao cho Alexei A. Abrikosov, Vitaly L. Ginzburg và Anthony J. Leggett v́ có những đóng góp để cải thiện hiểu biết của con người về hiện tượng siêu dẫn và siêu lỏng.

Mặc dầu có khá nhiều các hợp kim và hợp chất siêu dẫn được phát hiện trong khoảng 75 năm sau phát hiện của Kamerlingh-Onnes, hiện tượng siêu dẫn măi được xem như là hiện tượng chỉ xảy ra tại nhiệt độ thấp, với nhiệt độ chuyển pha siêu dẫn thấp hơn 20 Kelvin. Cho nên khi J. Georg Bednorz và K. Alexander Müller cho thấy rằng ôxít lanthan-đồng có pha thêm bari có nhiệt độ chuyển pha là 35 Kelvin th́ mọi người rất ngạc nhiên. Và ngay sau đó, các pḥng thí nghiệm khác công bố các hợp chất có cấu trúc tương tự như thế có tính siêu dẫn ở nhiệt độ khoảng 100 Kelvin. Phát hiện về siêu dẫn nhiệt độ cao này khởi động một làn sóng trong vật lư hiện đại: t́m hiểu có chế có bản cho tính siêu dẫn của các vật liệu đặc biệt này. Bednorz and Müller nhận giải Nobel năm 1987.








Alert webmaster - Báo webmaster bài viết vi phạm nội quy
 

  góp ư kiến

 
   

  Kí hiệu: : trang cá nhân :chủ để đă đăng  : gởi thư  : thay đổi bài  :ư kiến

 
 

 


Nhà | Ghi danh Thành Viên | Thơ | H́nh ảnh | Danh Sách | T́m | Diễn đàn | Liên lạc | Điều lệ | Music | Link | Advertise

Copyright © 2024 Vietnam Single & Tim ban bon phuong All rights reserved.
Hoc Tieng Anh - Submit Website Today - Ecard Thiep - Hot Deal Network